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The relaxation and breakup of an elongated droplet in a viscous and initially quiescent
fluid is studied by solving the full Navier–Stokes equations using a three-dimensional
finite volume method coupled with a moving mesh interface tracking (MMIT) scheme
to locate the interface. The two fluids are assumed incompressible and immiscible.
The interface is represented as a surface triangle mesh with zero thickness that moves
with the fluid. Therefore, the jump and continuity conditions across the interface are
implemented directly, without any smoothing of the fluid properties. Mesh adaptations
on a tetrahedral mesh are employed to permit large deformation and to capture the
changing curvature. Mesh separation is implemented to allow pinch-off. The detailed
investigations of the relaxation and breakup process are presented in a more general
flow regime compared to the previous works by Stone & Leal (J. Fluid Mech., vol. 198,
1989, p. 399) and Tong & Wang (Phys. Fluids, vol. 19, 2007, 092101), including the
flow field of the both phases. The simulation results reveal that the vortex rings
due to the interface motion and the conservation of mass play an important role
in the relaxation and pinch-off process. The vortex rings are created and collapsed
during the process. The effects of viscosity ratio, density ratio and length ratio on the
relaxation and breakup are studied. The simulations indicate that the fluid velocity
field and the neck shape are distinctly different for viscosity ratios larger and smaller
than O(1), and thus a different end-pinching mechanism is observed for each regime.
The length ratio also significantly affects the relaxation process and the velocity
distributions, but not the neck shape. The influence of the density ratio on the
relaxation and breakup process is minimal. However, the droplet evolution is retarded
due to the large density of the suspending flow. The formation of a satellite droplet
is observed, and the volume of the satellite droplet depends strongly on the length
ratio and the viscosity ratio.

1. Introduction
The breakup and deformation of droplets in a suspending fluid is of great interest

and has been studied both experimentally and numerically for decades due to the
fundamental importance in nature and in engineering applications, such as raindrops,
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sprays, inkjet printing, etc. The pioneering work on the deformation and breakup of
a droplet was performed by Taylor (1932, 1934). He showed that the deformation of
an initially spherical droplet by steady linear flow is governed by the viscosity ratio
between the drop phase and the suspending fluid and the capillary number (ratio
of the viscous forces to surface tension forces). The breakup of the droplet by shear
was also experimentally studied, and a critical capillary number for the onset of the
breakup was reported. Rallison (1984) reviewed the work on the deformation of small
droplets and bubbles in shear flows.

Stone, Bentley & Leal (1986) examined transient effects on the deformation and
breakup of a liquid droplet in another viscous fluid using a computer-controlled four-
roll mill. In particular, they investigated the continuous deformation and elongation of
a liquid drop in a two-dimensional linear flow. In addition, they studied the relaxation
and pinch-off process for the deformed and elongated droplet when the imposed
linear flow is abruptly terminated. They showed that the end-pinching (a mechanism
proposed by Stone et al. 1986 for the breakup of an elongated droplet) has a strong
dependence on the viscosity ratio, and specifically, for the viscosity ratio greater
than unity, much longer elongation is needed to guarantee breakup. A qualitative
explanation of the end-pinching was proposed. In order to further investigate the end-
pinching mechanism, a detailed study of the relaxation and breakup of an elongated
droplet at low Reynolds numbers was performed by Stone & Leal (1989) using a
boundary integral method. Their numerical results indicated that the relaxation and
breakup process is totally determined by the viscosity ratio and the initial shape of
the elongated droplet. They also proposed that the end-pinching is the competition
between a surface tension driven flow near the end and a pressure-driven flow
away from the centre of the elongated droplet. It was found that the capillary-wave
instability mechanism cannot be used to explain the relaxation and breakup process
of a moderately elongated droplet in another fluid. These numerical simulations were
limited to low-Reynolds-number flow, where the inertia is completely neglected.

Based on the previous works by Stone et al. (1986) and Stone & Leal (1989), Qian
& Law (1997) proposed a schematic of the end-pinching mechanism. The rounded end
gives larger curvature than the midsection of the ligament, which leads to a higher
internal pressure near the end than that in the cylindrical section. This pressure
difference generates a local flow and drives the ligament end towards the midsection.
Then, the bulbous ends are created due to the accumulation of mass, and this results
in concavity near the ends. Consequently, a pressure minimum near the location
with outward curvature creates a local flow moving towards the end. A neck is then
formed to conserve the mass of the ligament, and the pressure in the neck region
increases due to the large curvature. This pressure induces an additional flow towards
the midsection, which further decreases the radius of the neck region. Finally, this
unstable necking process leads to the pinch-off of the bulbous end. Ha & Leal (2001)
extended the work by Stone et al. (1986) to study the elongation of a fluid drop at
much higher shear rates. They found that the critical elongation ratio for the ligament
breakup depends strongly on the shear rate.

Recently, using a coupled level set and volume-of-fluid method and by neglecting the
dynamics effect of air, Tong & Wang (2007) simulated the time-dependent relaxation
and pinch-off of a moderately elongated liquid droplet. The effect of the end shape
on the breakup was investigated, and they found that the end shape plays a key role
in the relaxation process. The underlying mechanism of the end-pinching was also
examined, and they reported that the schematic of the end-pinching mechanism by
Qian & Law (1997) was ‘flawed’, and a corrected explanation of the end-pinching
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was proposed. In Tong and Wang’s schematic, the maximum pressure appears a little
bit upstream from the neck region where the radius is at a minimum as compared
to Qian and Law’s explanation, in which the maximum pressure resides right at
the neck region. This is because the lateral curvature of the neck region creates a
slightly concave surface, based on their numerical results, and thus decreases the
surface tension forces. The local flow, which starts from the centre of the neck region,
moves towards the centre of the midsection. They pointed out that the competition
between the extending flow and the primary recoiling flow determines the breakup or
reopening of the neck. It should be noted that a major difference between the above
two proposed mechanisms lies in the surrounding fluids. Namely, in Tong and Wang’s
study, the surrounding fluid, i.e. air, is neglected. Thus the viscosity and density ratio
are both infinity; while Qian and Law’s explanation is based on the investigations by
Stone et al. (1986) and Stone & Leal (1989), in which the viscosity ratios are between
11.3 and 0.01, and the densities of the both fluids are almost matched in order to
minimize the buoyancy effect.

The goal of this paper is to perform a detailed investigation of the underlying
physics of the relaxation and breakup of an elongated droplet, especially for the end-
pinching mechanism, using a three-dimensional direct numerical method. We simulate
cases with a large range of viscosity ratio and/or large density ratio. In particular,
compared to the work by Stone & Leal (1989), the present cases are more general
in that both the inertial and viscous forces are considered, and in contrast to the
simulations by Tong & Wang (2007), the suspending flow effects are included. By
employing mesh adaptations locally, the present study can capture the necking process
to as little as 1 % of the initial droplet radius. In addition, the full Navier–Stokes
calculations shall be used to depict the whole fluid field in space, which provides us
a better understanding of the underlying physics.

In recent years, a number of numerical methods were developed and have been
successfully used to simulate incompressible and immiscible two-phase flow. Volume
of fluid (Chen et al. 1999; Scardovelli & Zaleski 1999), front tracking (Unverdi
& Tryggvason 1992; Mortazavi & Tryggvason 2000; Hua & Lou 2007), level set
(Sussman, Smereka & Osher 1994; Sussman & Smereka 1997), level set coupled
with adaptive unstructured volume remeshing (Zheng et al. 2005) and immersed-
boundary (Peskin 1977; Li & Lai 2001) methods are a few examples. In most of
the above methods, the Navier–Stokes equations are solved on a background mesh,
and the jumps in the fluids’ properties and the normal stresses (normally, surface
tension forces) across the interface are usually smoothed in a finite thickness interface
region. The boundary integral method (Stone & Leal 1989; Zhou & Pozrikidis 1993;
Cristini, Blawzdziewicz & Loewenberg 2001) is used to accurately capture the interface
dynamics for Stokes flows, where the interface is of zero thickness.

In this paper, three-dimensional direct numerical simulations of the relaxation and
breakup of an elongated droplet are performed by solving the full Navier–Stokes
equations for the two-phase flow system using a finite volume method, coupled with
a moving mesh interface tracking (MMIT) scheme to locate the interface (Quan &
Schmidt 2007). The viscosity ratio is in the range of 0.1–100 and density ratio in the
range of 1–100. The Ohnesorge number, which relates the viscous and surface tension
forces, is in the range of 3.73 × 10−4 to 1.18, which implies that the Reynolds numbers
based on the surface tension forces are significantly greater than unity. The effects
of the viscosity ratio, density ratio and length ratio on the overall relaxation process
are investigated. The effects on the detailed physics near the breakup point are also
studied. The previously proposed end-pinching mechanisms (Stone et al. 1986; Stone
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& Leal 1989; Qian & Law 1997; Tong & Wang 2007) are further examined, and
more general end-pinching explanations are proposed based on the detailed analysis
of the fluid field and the shape of the neck region. By examining the fluid velocity
field, it is found that the different vortex ring patterns are the key reason for the
disparate neck shapes. In the MMIT method, the interface is represented as a surface
triangle mesh, and is therefore zero thickness. So the jumps in the fluid properties
and the normal stresses are implemented directly, without any smoothing. Localized
mesh adaptations on the interface and the interior tetrahedral cells are employed to
maintain good mesh quality, to capture the curvature variation, to deal with large
deformation and also to achieve computational efficiency. Topological transition in
the two-phase flow simulations, such as breakup, is a challenge for the MMIT. To
address this challenge, a mesh separation scheme is applied.

2. Problem formulation
The transient motion of the relaxation and breakup of a moderately elongated

droplet in another viscous fluid is governed by the Navier–Stokes equations. The two
fluids are assumed incompressible and immiscible, and there is no phase change in
the process. The two fluids are initially at rest.

Normally, the Navier–Stokes equations are presented in a form which is derived
for a fixed control volume, where the shape, the position and the volume do not
change with time. However, in a two-phase flow scenario, such as ligament relaxation
and pinch-off, the interface moves with the fluid, and the interface is an ideal surface
for the control volume having an interfacial surface. So it is more convenient for us
to use the integral form of the Navier–Stokes equations in a moving and deforming
control volume for the two incompressible and immiscible fluids as

d

dt

∫∫∫
CV

dv =

∫∫
CS

v · n ds, (2.1)

d

dt

∫∫∫
CV

ρ dv +

∫∫
CS

ρ(u − v) · n ds = 0, (2.2)

d

dt

∫∫∫
CV

ρu dv +

∫∫
CS

ρu(u − v) · n ds =

∫∫∫
CV

ρ f dv −
∫∫

CS

pn ds

+

∫∫
CS

μ(∇u + ∇uT ) · n ds, (2.3)

where CV and CS denote a control volume and the surfaces of the control volume,
u is the fluid velocity, v stands for the surface velocity of the moving and deforming
control volume, n is the unit normal vector of the face, f denotes the body force
per unit mass and the superscript T stands for the transpose. It should be noted that
(2.1) is a consistency requirement for the volume of a moving and deforming control
volume that can be derived from Leibnitz’s theorem. It also should be noted that the
convection terms in (2.2) and (2.3) are identically zero on the interface if the interface
moves with the fluid velocity, i.e. u = v. Therefore, the jump in the fluid’s density
across the interface presents no numerical difficulties for the MMIT method.

The interface is an internal boundary in the two-phase flow, and the fluid
properties are normally discontinuous across this boundary. Therefore, there must be
some boundary conditions across the interface for solving the above Navier–Stokes
equations. From conservation of mass (2.2), if an infinitesimally thin control volume
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Figure 1. Schematic of the physical and computational domain of an elongated droplet in
another fluid. The domain mesh is also shown. The ligament is in the centre with the finer
mesh.

is applied to the interface, we have

u1n = u2n = vn, (2.4)

where the subscript n stands for the normal component, and the subscripts 1 and 2
denote phase 1 and phase 2. This indicates that the normal velocities of the two fluids
near the interface are continuous, and should equal the normal velocity of the moving
interface in order to satisfy the conservation of mass for each phase. Because the two
fluids are viscous, the tangential velocities of the two fluids near the interface should
be continuous. From the conservation of linear momentum (2.3), and considering the
surface tension forces on the interface, the jump condition of the normal stresses is

[[p]] = −σ

(
1

R1

+
1

R2

)
+ [[ 2μ (∇u · n) · n]], (2.5)

where [[·]] denotes the difference across the interface, σ stands for the surface tension
coefficient and is assumed constant to avoid Marangoni effects, R1 and R2 are the
principle radii of the surface. It should be noted that the jump in the normal stresses
includes not only the surface tension forces but also the difference in the normal
viscous stresses. The continuity condition of the shear stresses is expressed as

[[μ((∇u + ∇uT ) · n) ·τ ]] = 0, (2.6)

where τ denotes the unit tangential vector.
The physical problem and the computational domain are sketched in figure 1, and

the mesh is also shown. The outer domain is a cylinder with a coarse mesh and filled
with a viscous liquid. A no-slip boundary condition is imposed on the cylinder walls
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including the two end surfaces. An initially elongated droplet with a radius of r0

of the cylindrical section is located at the centre of the computational domain and
discretized with a fine mesh. The ligament has two bulbous ends, and the shapes of
the two ends are ellipsoidal (see Stone & Leal 1989; Tong & Wang 2007). The longest
and the shortest axes for the ellipsoid are 2.6r0 and 1.7r0, as defined in figure 1, for the
simulation reported here. The connection between the central cylinder and the end
ellipsoids is blended smoothly to avoid any irregularity. The total length of the liga-
ment is L. The suspending fluid has a viscosity of μs and a density of ρs , and the
viscosity and the density for the elongated droplet are μd and ρd , respectively. The
liquid properties for the droplet are kept constant for all the simulations. The effect of
the density and the viscosity ratios on the relaxation and breakup process is studied
by varying the fluid properties of the suspending phase. Initially, the two fluids are
at rest. Gravity is neglected in all the simulations; thus buoyancy forces are absent
for any density difference. The density ratio is defined as η = ρd/ρs , the viscosity ratio
as λ= μd/μs and the length ratio as κ = L/r0. Then, the characteristic time based on
the radius of the cylindrical section (r0) is tc = r0μd/σ . The Ohnesorge number based
on the droplet properties is defined as Ohd = μd/

√
ρdσr0, and Ohs = μs/

√
ρsσ r0 for

the Ohnesorge number based on the suspending fluid properties. Here, an effective
Reynolds number is defined based on uc (uc =

√
σ/ρdr0) as Re =

√
ρdσr0/μd , which is

the inverse of Ohd . The characteristic kinetic energy per unit mass is ec = σ/2ρdr0.

3. Numerical method and mesh adaptation
The unsteady motion of the ligament relaxation and breakup in another fluid is

simulated by a staggered finite volume MMIT method to capture the deforming and
moving interface. The governing equations (2.1), (2.2) and (2.3) are discretized by a
finite volume method in a strongly conserved form as following (for details, see Dai
et al. 2002; Zhang, Schmidt & Perot 2002; Perot & Nallapati 2003; Dai & Schmidt
2005; Quan & Schmidt 2007):

V n+1
c − V n

c

�t
=

∑
cell faces

Umesh
f , (3.1)
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c V
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(3.3)

and the convection term is computed by central differencing in time and a predictor
corrector scheme:∑
cell faces

ρf uf

(
Uf − Umesh

f

)
=

∑
cell faces

0.5ρf

[
un

f

(
Uf − Umesh

f

)n
+ un+1

f

(
Uf − Umesh

f

)n+1
]
.

(3.4)

The viscous and convection terms are calculated in a similar scheme, i.e. a centred
difference in time with a predictor–corrector scheme, and are second-order accurate
(Zhang et al. 2002). It should be noted that in the simulations, the gravitational force
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f is neglected. The moving mesh face flux Umesh
f is computed from the displacement

of the face nodes as (Perot & Nallapati 2003)

Umesh
f =

xn+1
f − xn

f

�t
·
[

1

2

(
nn+1

f An+1
f + nn

f An
f

)
− �t2

12

∑
face edges

(vn1 × vn2)

]
. (3.5)

Here, Uf is the face flux, Vc denotes the cell volume, rCG
c stands for the position

vector of the cell centroid, Af is the face area, the superscript n stands for the time
step, x is the node position, vn stands for the node velocity and the subscripts c and
f denote the cell and face respectively.

The computational domain for both the ligament and the suspending phases is
discretized by tetrahedral meshes with much finer meshes in the droplet phase, as
shown in figure 1. The interface is represented by triangle meshes which connect
the meshes of the ligament phase and the suspending fluid phase to a single mesh.
The Navier–Stokes equations are solved in a discrete stream function formulation;
thus the mass conservation is satisfied automatically (Perot & Nallapati 2003). Three-
dimensional stream function vectors (u = ∇ × s with u representing velocity and s
a stream function vector) are defined at the edge centres. The face fluxes and the
cell-centre velocities can be constructed from the stream function vectors by using
Stokes’ theorem and Gauss’ divergence theorem. An exact fractional step method
(Chang, Giraldo & Perot 2002) is employed to avoid solving a Poisson equation for
pressure. A three-step second-order low-storage Runge–Kutta scheme is used for time
integration (Perot & Nallapati 2003). The time step is limited by Courant–Friedrichs–

Lewy (CFL) number (�t � CFL · �x
U

), surface tension (�t � C
√

ρ�x3/2πσ ) and mesh
Péclet numbers (2 · CFL � Pe � 2/CFL), where U is a characteristic velocity, C is a
constant and usually is chosen the same as the CFL number (Quan & Schmidt 2007).

The mesh vertices on the interface move in a Lagrangian fashion with the fluid
velocity to conserve the mass of each phase and to avoid any mixing, while the interior
vertices are free to move in order to maintain mesh quality. Mesh motion alone is
not sufficient to provide adequate mesh quality; as the mesh moves, changes in mesh
connectivity are required. In order to have near-optimal connectivity, to capture the
large variation of the curvature on the interface, and to achieve computing efficiency
as well as accuracy, mesh adaptation schemes on tetrahedral meshes, such as, 3-2
and 2-3 flips, 4-4 swaps, edge bisections, edge contractions and an optimization-based
smoothing (Dai & Schmidt 2005; Quan & Schmidt 2007) are employed. A mesh
separation scheme is applied to deal with the breakup. The capability of the mesh
adaptations and the mesh separation has been tested by numerous cases of two-phase
flow (Quan & Schmidt 2006, 2007) and single phase flow (Dai & Schmidt 2005).

As mentioned in the last section, the jump in the fluid’s density across the interface
is automatically taken care of in the MMIT method. However, the viscosity on the
interface is not defined. The geometric harmonic mean (Quan & Schmidt 2007) is used
to calculate the viscous shear stresses on the interface, and is second-order accurate.
Previously, Liu, Fedkiw & Kang (2000) derived a similar scheme, but in a different
context. The surface tension force is calculated using a least squares parabola fitting
in a local coordinate system, and is implemented as a pressure boundary condition.
The jump in normal viscous stresses is implemented directly by using Taylor series
expansion to the first order for a multivariable function.

The numerical method is capable of accurately simulating the two-phase flows
with high density and viscosity ratios and has been validated against a number of
experimental observations and theoretical predictions (Quan & Schmidt 2006, 2007).
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In particular, a zero-gravity three-dimensional droplet oscillation in a gaseous flow
with Ohd of 0.013 was computed and compared with the analytical solution by Lamb
(1945). The relative errors of the oscillation period and the decay factor are 0.9 %
and −0.4 %, respectively. The numerical simulation is capable of accurately capturing
the oscillation for 8 periods. This droplet oscillation is fundamentally similar to the
ligaments considered in this paper with the driving force being the surface tension and
both fluids being viscous. The significant difference between the droplet studies and
the current work is the initial shape. Another test case is a droplet under shear with
a capillary number of 0.05 (Ca = μsR0γ̇ /σ , where R0 is the radius of the spherical
droplet and γ̇ denotes the shear rate). The computed deformation factor of 0.076,
agrees well with the experimental result, 0.07, by Taylor (1934). A mesh dependence
study has been performed in Quan & Schmidt (2006), and it was found that the
results for the coarse mesh agreed very well with the ones for the finer mesh.

4. Results and discussion
In this section, the results of the relaxation and breakup of a moderately elongated

droplet in another viscous fluid are reported and discussed. The effects of the viscosity
ratio, the density ratio and the length ratio on the relaxation and breakup process are
investigated. A detailed examination of the end-pinching mechanism is also presented.
A fixed length ratio of 20, as shown in figure 1, is used to investigate the viscosity
ratio effect and the density ratio influence.

4.1. Mesh adaptation and mesh separation

As the interface moves with the fluids, in order to capture the interesting physics which
occur near the interface, it is important to ensure that the mesh adaptation scheme
is capable of maintaining good mesh quality. The relaxation of an elongated droplet
with η = 10, λ=0.1, κ = 20, and Ohd = 0.037, Re =27.03, Ohs = 1.18 is employed to
show the capability.

Figure 2 shows the surface mesh and the interior mesh of the ligament relaxation
near the time of the breakup. Here, the time of the breakup is the moment that the
mesh separation scheme is applied. In this case, it occurs when the smallest radius of
the neck region is around 2.4 % of the radius of the cylinder section of the original
elongated droplet. Compared to the radius of the end droplet shown in the figure 2,
the neck region radius is only around 1 %. Figure 2(a) displays the interface mesh for
the ligament. The cells in the neck region are hardly perceivable due to the resolution
required to capture the interface curvature. Details of the mesh in the neck region are
clearly displayed in the enlarged view in figure 2(c). It can be seen that the surface
mesh quality is good, and the transition from the finest mesh in the neck region to
the mesh of the droplet is smooth. The interior mesh at the breakup moment for
both the droplet phase and the suspending fluid are shown in figure 2(b). For clarity,
the suspending fluid is shaded lighter, and the droplet shaded darker. It should be
noted that, although different shade levels are used to display the two phases, the
simulations use a single mesh for the whole domain. The mesh near the interface,
where the most interesting physics occur, is so fine that it is difficult to see the
individual cells, while the mesh far away from the interface is very coarse, and the
largest cells are near the boundaries where the fluid is almost at rest.

A mesh separation scheme is needed for simulating pinching off into separate
droplets. Mesh separation is implemented as: (i) convert the fluid properties of the
droplet cells in the neck region to the properties of the suspending fluid; (ii) project
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(a) (c)

(b) (d)

Figure 2. Mesh adaptation for the interfacial and the interior meshes before the pinch-off:
η = 10, λ= 0.1, κ = 20, and Ohd =0.037,Ohs =1.18. (a) Mesh for the ligament just before
pinch-off in the x–y plane; (c) enlarged view of the mesh in the neck region; (b) mesh for the
whole domain just before pinch-off. The lighter shade stands for the suspending phase, and
the mesh for the elongated droplet is shaded darker; (d ) blow-up view of the interior mesh at
the neck region. Here 50 % depth blanking from the front in the z direction (cells near the
central plane) is applied in (b) and (d ).

(a)

Newly created interface

(b)

Figure 3. Mesh separation. (a) Interface meshes after the conversion. The two newly created
interfaces are rough. (b) Interface meshes after the projection. The interface meshes are much
smoother. Only the surface mesh of the droplet phase is displayed.

the new created interface face nodes to a local hemisphere to smooth the newly
created rough interface. The details of the scheme can be found in Quan & Schmidt
(2007) and Quan, Lou & Schmidt (2009). Figure 3(a) shows the mesh just after the
conversion, and it can be seen that the newly created interfaces are too irregular to
continue the computation because the calculated surface tension forces would have
huge random errors. The smoothed interface is displayed in figure 3(b): it is clear
the interface is much smoother and the calculation can be continued. The portion of
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(a) (b)

Figure 4. Comparison between the smallest neck radius of 5 %, 2.4 % and 1 % at t =507.2,
509.8 and 511.8 from the top to the bottom, respectively. (a) The overall shape; (b) a detailed
view of the neck region of (a).

the droplet in the neck region which is converted to the suspending fluid should be
very tiny compared to the whole droplet to minimize the mass loss of the droplet and
mass gain of the suspending fluid.

The cutoff neck radius was varied from 5% to 1 % of the initial droplet radius in
order to check for resolution sensitivity. Figure 4 shows the comparison of the three
cases. It is noted that the differences of the overall shape are minimal; by allowing
smaller neck radius, the pinch-off is slightly delayed. There are a few differences in
the small-scale features of the neck region in the shape and size. With the change in
cutoff neck radius by more than a factor of 2, the mass differences of the droplets
(the two primary drops and the middle satellite, respectively) are as small as 0.5 %
and the differences of the distances between created droplets are less than 0.8 %.
Qualitatively, the different cutoff radius very slightly retards the development of some
of the very small-scale features just after pinching.

4.2. Viscosity ratio effect

The viscosity ratio is one of the governing non-dimensional parameters for the droplet
relaxation and breakup, so it is of interest to understand the effect of the viscosity
ratio on the process. Figure 5 shows the sequences of the relaxation and breakup for
the ligament with bulbous ends for different viscosity ratios, i.e. λ=0.1, 10 and 100.
The density ratio is 10, and the Ohnesorge number based on the droplet properties is
0.037. The droplet is shaded by its extension in the radial direction, and the times are
non-dimensionalized by the characteristic time tc = r0μd/σ . The separation scheme is
applied to the simulations here and thereafter when the neck region is very narrow
(typically less than 5 % of r0).

To ensure that the outer walls do not significantly affect the process, a larger
domain for the case with density ratio of 10 and viscosity ratio of 100 was simulated
and compared to the one with the domain as shown in figure 1, where the smallest
distances from the outer walls to the ligament in axial and radial directions for the
larger domain are two times of the distances for the smaller domain. It was found
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0.4

(a) (b) (c)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 5. The effect of the viscosity ratio on the relaxation and breakup of an elongated
droplet immersed in another viscous fluid. The droplets are shaded by the non-dimensional
radius (r/r0) in the radial direction, and the contour legend is on the top of the figure: η = 10,
κ = 20 and Ohd = 3.7 × 10−2. (a) λ= 0.1; Ohs = 1.18; t = 0.0, 251.3, 435.3, 489.6, 509.8, 511.2,
532.9, 613.7. (b) λ=10; Ohs = 1.18 × 10−2; t = 0.0, 108.0, 144.1, 158.5, 159.8, 169.2, 199.2, 242.4.
(c) λ= 100; Ohs = 1.18 × 10−3; t = 0.0, 108.0, 144.0, 157.0, 158.5, 165.6, 201.7, 244.9.

that the differences are minimal, so for all the simulations presented in this paper, the
smaller domain is used.

4.2.1. Shape evolution

Figure 5(a) shows an evolution of the transient behaviour of elongated droplet
relaxation and pinch-off with a viscosity ratio of 0.1. The Ohnesorge number based
on the suspending fluid’s properties is 1.18. First, due to the large surface tension
forces at the two ends, the two bulbous ends move towards the centre, and at the
same time, necking occurs near the two ends in the middle section, which can be seen
at time of 251.3. Then due to the large surface tension force at the neck region, the
neck becomes increasingly narrower until it breaks up at a time slightly larger than
509.8. After the breakup of the two bulbous ends, the middle section has a shape
with two nearly pointed ends. The two pointed ends move towards the centre due to
huge surface tension forces, and finally a spherical satellite droplet is obtained due
to the great viscous damping from both phases. Figures 5(b) and 5(c) show a series
of relaxation and pinch-off history for the cases with viscosity ratio of 10 and 100
respectively. The relaxation and breakup processes for these two cases are similar.
Necking regions near the two bulbous ends are created, and then the curvature of
the neck regions becomes increasingly large, and finally two large droplets pinch off.
A middle section with two somewhat pointed ends is formed, and these two ends
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(a) (b)

Figure 6. Blow-up view of the neck shape showing the difference in the symmetry.
(a) The case in figure 5(a) with λ=0.1; (b) the case in figure 5(c) with λ= 100.

contract towards the centre. Meanwhile, the two newly formed droplets are dimpled
at the inner side, especially for the case in figure 5(b) at t = 169.2. Then, the middle
section experiences damped oscillation and so do the two end droplets.

Comparing figures 5(a), 5(b) and 5(c), we can observe some interesting differences.
The neck shape just before the breakup for the viscosity ratio of 0.1 is much different
from the shape of the other two cases where the viscosity ratio is greater than one.
A detailed view of the neck shapes is shown in figure 6 with the droplet shaded grey.
Figure 6(a) shows the neck shape for λ= 0.1, and figure 6(b) shows it for λ=100. It
can be seen clearly that the pinch-off region for λ= 0.1 is approximately a cylinder
of revolution and is almost symmetric around a plane transverse to the ligament axis.
However, the shape for the λ= 100 case is conical, and there is no such symmetry
about the plane perpendicular to the relaxation direction. Burton, Waldrep & Taborek
(2005) performed experiments on the water–air systems using high-speed microscopy
and reported the similar distinction in the shape of the neck region between an air
bubble in water and a water droplet in air. Although the governing equations for the
two systems are similar, the roles of the high and low viscosity (or density) fluids
are reversed, and this leads to differences in the flow pattern (a detailed discussion is
followed in § 4.2.3) and thus resulting different shapes of the breakup regions. This
‘quadratic’ shape was also observed by Doshi et al. (2003). The conical shape of the
neck region for the more viscous droplet pinch-off in a less viscous fluid were also
reported previously (e.g. Eggers 1997; Lister & Stone 1998; Zhang & Lister 1999;
Burton et al. 2005).

Second, after the two end droplets pinch off, the relaxation processes of the middle
section for the different viscosity ratio cases are also distinctly different. For the low-
viscosity ratio case with λ=0.1, due to the higher viscosity forces from the suspending
flow, the relaxation process is retarded, and the pointed middle section becomes a
spherical droplet very quickly without further oscillation. For the higher viscosity
ratio cases (λ= 10 and 100), the relaxation and the necking are much faster as viscous
damping from the suspending flow is weaker. The two nearly pointed ends of the
middle section move towards the centre quickly due to the large surface tension forces.
Because the damping from the suspending flow is smaller, the velocity at the two ends
is large, and then an oblate spheroid is formed. The middle section will experience
oscillation until the energy is damped out by the viscous forces. It should be noted
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Figure 7. Evolution of the minimum neck radius. t is the time before the pinch-off and is
non-dimensionalized by tc . (a) Log–log plot for λ= 0.1 (figure 5a). The line has a slope of
0.89. (b) λ= 100 (figure 5c).

that the volumes of the satellite droplets of the two larger viscosity ratio cases are
greater than the one with viscosity ratio of 0.1. There are also some differences in
the primary droplets. The primary droplets are dimpled in the inner side for the two
high viscosity ratios (see figure 5b at t = 169.2 and figure 5c at t = 165.6), while there
is no such dimpled shape for the small viscosity ratio.

4.2.2. Neck radius

The pinch-off process, especially the evolution of the minimum neck radius has been
a subject of interest (e.g. Papageorgiou 1995; Eggers 1997; Cristini, Blawzdziewicz
& Loewenberg 1998; Cohen & Nagel 2001; Chen, Notz & Basaran 2002; Burton
et al. 2005; Keim et al. 2006; Thoroddsen, Etoh & Takehara 2007; Burton & Taborek
2008; Quan & Hua 2008). To quantify the necking process, the time evolution of the
minimum neck radius (r∗ = rmin/r0 × 100 %) for two cases is shown in figure 7, where
time is the time left to pinch off and non-dimensionalized by tc. For the λ=0.1 case,
the minimum neck radius decreases in a power law for r∗ less than 20 %, as a straight
line is fitted for the numerical solutions in a log–log plot. The exponent is 0.89. The
power law was reported experimentally by Burton et al. (2005) and by Thoroddsen
et al. (2007) with more details for a bubble pinch-off in a liquid of different viscosities.
They found that the power law exponent varies from 0.5 to 1 for different external
fluids. Thoroddsen et al. (2007) defined a Reynolds number based on the capillary
viscous velocity as Reμ = ρDiσ/μ2, where Di denotes the inner diameter of the needle.
For Ohs = 1.18 of the simulation, Reμ is around 1.4. The nearest case by Thoroddsen
et al. (2007) is Reu = 0.3, which has an exponent of 0.94. It should be noted that in
our cases, the only driving force is surface tension, while in the experiments by Burton
et al. (2005) and by Thoroddsen et al. (2007), the buoyancy force acts as another
driving force besides the surface tension force. This might lead to the difference in
the exponents. For the case with λ=100, the minimum neck radius decreases linearly
in time, and the linear relationship was reported by Eggers (1997) for high-viscosity
liquid jet breakup and by Cohen & Nagel (2001) for two-phase droplet pinch-off.
This further validates the accuracy of the numerical method. Recently, for inviscid
pinch-off, Burton & Taborek (2008) reported experimentally that the shape of the
pinch-off region and the power law governing the neck radius evolution are distinctly
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(d)(a)

(b) (e)

(c) (f )

Figure 8. Detailed velocity fields of the necking process for the case of figure 5(a) (η = 10,
λ=0.1, L/r0 = 20, Ohd = 0.037 and Ohs = 1.18) in the x–y plane. Figures (d )–(f ) are the
overall velocity field, and the vectors’ lengths are unscaled to show the vortices. Figures (a)–(c)
show enlarged views of the figures (d )–(f ), and the velocity vectors are plotted with scaled
lengths. (a) t = 251.3, (b) t = 489.6. and (c) t = 506.2.

different for low density ratio and high density ratio, and the transition happens at a
density ratio around 0.25.

4.2.3. Velocity field

In order to explain the above differences and to understand the underlying physics,
it is necessary to examine the fluid velocity field of the whole domain including both
the suspending and droplet phases. Figures 8 and 9 show the velocity vectors and
the neck shape for λ= 0.1 (the case in figure 5a) and λ=100 (the case in figure 5c),
respectively, at three representative times before breakup. The velocity vectors shown
in figure 8(a–c) and figure 9(a–c) are scaled according to their magnitude. However,
the lengths of the velocity vectors shown in figure 8(d–f ) and figure 9(d–f ) are
unscaled in order to clearly show the vortices. It should be noted that our numerical
simulations are three-dimensional calculations. The vortices shown in the figures are
actually vortex rings about the x -axis because only a x–y plane cut of the whole
domain is shown here (see figure 1 for the coordinate system).

From these developing velocity fields and the necking processes, a number of
interesting observations can be made. There are vortex rings in the whole domain
for the two cases, which can be seen clearly in figure 10. In the figure, the lines with
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(a) (d)

(b) (e)

( f )(c)

Figure 9. As in figure 8 but with λ=100 (figure 5c), and Ohs = 1.18 × 10−3. (a) t = 108.0,
(b) t = 144.0 and (c) t = 157.0.

arrows are the streamlines in the x–y plane for the two cases just before breakup.
The inner solid line is the ligament and the outer solid lines are the cylinder wall
boundaries. To ensure that these circular streamlines actually represent the vortices in
the domain, the vorticity is calculated for the case of figure 10(a) and is displayed in
figure 11. Here, only the x–y plane cut is shown, and the level of the contour is based
on the z component of the vorticity. The vorticity is non-dimensionalized by σ/(r0μd).
It is clear that the circular streamlines in the manuscript demonstrate the vortex rings
in the fluid field. The maximum of the absolute value of the non-dimensional vorticity
is around 1.5. However, in order to display all the vortex rings in the fluid field, the
contour levels are chosen to range from −0.01 to 0.01. Therefore, it is more intuitive
to observe the vortex rings using the streamlines.

In contrast, there are no vortex rings reported in Stone and Leal’s numerical work
(Stone & Leal 1989) using a boundary integral method. Vortex rings were observed
in Tong and Wang’s numerical simulation (Tong and Wang 2007) by solving the
full Navier–Stokes equations. Their vortex centre is located inside the droplet, while
it can be seen clearly that some vortex rings of our results are just outside of the
interface and some are crossing the interface. This is due to the fact that in Tong
and Wang’s work, the dynamic effect of the suspending fluid (air) is neglected, while
our numerical method directly solves the full Navier–Stokes equations for both fluids
including the suspending and the drop phases.
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(a)

(b)

Figure 10. Vortex rings’ pattern just before the breakup for the ligament with κ = 20. (a)
Streamlines in the x–y plane for case of figure 5(a). (b) Streamlines in the x–y plane for case
of figure 5(c). The outer solid lines are the boundary of the domain, and the inner solid lines are
the shape of the droplet. Note that these streamlines are interpolated from three-dimensions
and are approximate.

–0.010 –0.005 0 0.005 0.010

Figure 11. Vorticity contours in x–y plane of figure 10(a). The solid black lines denote the
droplet shape.
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Generation of vorticity at an interface has been an interesting subject for decades.
Cresswell & Morton (1995) observed vortex rings in the experiments of a water droplet
striking a water surface. They proposed that boundary condition of viscous stresses
being continuous across the water–air interface accounts for the vorticity generated
near the interface. Wu (1995) and Lundgren & Koumoutsakos (1999) pointed out that
vorticity at the interface is generated as a result of the balance of shear stresses. The
problem that we are solving contains two viscous immiscible fluids with continuity
of the shear stresses across the interface. The large surface tension forces in the two
ends drive the bulbous ends towards the centre, and the moving bulbous ends entrain
the suspending flow from the surroundings. The high pressure near the neck region
due to the large curvature drives liquid towards the ends, and moves the interface
inwards. This motion of the interface near the neck also induces the suspending fluid
to move towards the interface. Thus, vortices are created near the neck region and
near the ends. It should be noted that in both cases, there are always an even number
of vortex rings, and the vorticity alternates signs correspondingly (see figure 10).
This indicates that the total circulation in the whole domain maintains zero as time
progresses, which is anticipated for these axisymmetric cases.

It is also noted that the maximum velocity is near the neck region and the two ends.
This is the result of large curvatures in these regions, and thus high pressure. However,
there are some differences in both cases. The shape of the neck regions are different,
as described in the previous discussion. The velocities, which are perpendicular to the
direction of the relaxation, are at the portion of the neck region with the smallest
curvature for the case with λ= 0.1, and the velocities near the neck region that move
towards the end and towards the centre are almost symmetric. However, for the case
with λ=100 the velocities perpendicular to the relaxation direction are away from
the position with the smallest curvature, and there is no symmetry of the velocities
moving towards the centre and towards the end. These differences in the velocity field
account for the distinct neck shape. There are also some discrepancies in the vortex
rings for the two cases during the relaxation process. For the small viscosity ratio,
there is only one vortex ring near the neck region of figure 8(d ) where the necking is
just beginning. As time progresses, there is one more vortex ring created on the left of
the neck region, and the original large vortex ring becomes smaller (figure 8e). These
two vortex rings are in opposite directions. Finally, the two vortex rings are similar in
size just before the breakup (figure 8f ). However, for the cases with larger viscosity
ratio (figure 9), there are two vortex rings from the beginning of the necking, and the
one on the left increases in size, while the one on the right decreases and is hardly
perceptible at the time of the breakup.

4.2.4. Kinetic energy

We have shown previously that the viscosity ratio significantly affects the flow field
and the shape of the neck region. We shall study the viscosity effects on the evolution
of the ligament length and the history of the kinetic energy for both phases. The
kinetic energy per unit mass is defined and numerically calculated as

KE =

∫∫∫
Ω

1

2
ρu2 dv∫∫∫

Ω

ρ dv

=

∑
cells

1

2
ρcu

2
cVc

∑
cells

ρcVc

, (4.1)
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Figure 12. Viscosity ratio effect on the kinetic energy per unit mass for both phases. The
three cases here are the same cases in figure 5. (a) Droplet phase, (b) suspending fluid.
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Figure 13. Viscosity effect on the evolution of the ligament length. The three cases here are
the same cases in figure 5. The length is non-dimensionalized by its initial length.

where Ω denotes either the droplet phase or the suspending fluid, uc is the cell
velocity and Vc stands for the volume of a cell. Figure 12 shows the kinetic energy
per unit mass for the droplet and the suspending flow. Here the kinetic energy is
non-dimensionalized by ec = σ/2ρdr0, and time by tc = r0μd/σ . The kinetic energy of
the droplet for the large viscosity ratios (λ= 10 and 100) is much larger than that
for the small viscosity ratio. This is because the more viscous ambient fluid more
rapidly diffuses the momentum created by the surface tension forces, and thus less
surface tension energy transforms to kinetic energy. The same trend is observed for
the kinetic energy of the suspending flow. However, the kinetic energy for λ= 100 is
not always larger than that for λ= 10. This indicates that, although the kinetic energy
of the droplet for λ= 100 is always greater than the one for λ= 10, the energy transfer
from the droplet to the suspending flow is larger for λ= 100, thus the suspending flow
moves faster. It is noted that the kinetic energy for λ=0.1 increases with time and
reaches a maximum, and then decreases, while the kinetic energy for the two large
viscosity ratios oscillates after it reaches a local maximum. The first peak represents
the moment when the necking process is dominant, and the rest of oscillations denote
the relaxation and shape oscillation of the middle section after breakup. Figure 13
displays the length variation versus time for the three cases. Figure 13 again suggests
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(a) (b) (c)

Figure 14. The effect of the density ratio on the relaxation and pinch-off process of the
elongated droplet in a viscous fluid. The droplets are shaded the same as in figure 5: λ= 100,
κ = 20 and Ohd = 3.7 × 10−2. (a) η = 1; Ohs = 3.73 × 10−4; t = 0.0, 144.0, 165.6, 180.1, 181.6,
194.5, 252.3, 297.0. (b) η = 10; Ohs =1.18 × 10−3; t = 0.0, 108.0, 144.0, 157.0, 158.5, 165.6, 201.7,
244.9 (c) η = 100; Ohs = 3.73 × 10−3; t = 0.0, 115.4, 136.8, 147.7, 149.8, 158.5, 187.3, 223.3.

that the relaxation for the small viscosity ratio is slower than that for large viscosity
ratios. The differences in the evolution of the ligament length and the kinetic energy
further confirm that the pattern of the relaxation and pinch-off for the viscosity ratio
greater than O(1) is similar but distinctly different from the one for the viscosity
ratio less than O(1). These differences include the neck shape, the evolution of the
minimum neck radius and also the pattern of the vortex rings.

4.3. Density ratio effect

It was shown in the last section that viscosity ratio significantly influences the
relaxation and breakup of an elongated droplet. The effect of density ratio (one
of the non-dimensional governing parameters) on the relaxation and pinch-off shall
be investigated in this section. The length ratio (k =L0/r0) is 20, and the viscosity
ratio is kept at 100. The surface tension coefficient is σ = 7.2 × 10−2 kg s−2 and kept
constant. The density of the droplet is kept at 1.0 × 103 kg m−3, while the density of
the suspending fluids is varied to study the density ratio effect. Three density ratios
(η) are simulated: namely, 1, 10 and 100.

Figure 14 shows the relaxation and the breakup of an initially elongated droplet
with length ratio of 20 for three different density ratios. The droplets are shaded by
the size of the radius, and the contour levels are the same as the one in figure 5. For
the three different density ratios, the droplet experiences very similar process. The two
ends move towards the centre due to the large surface tension forces at the ends. Then
the droplet experiences necking and a conical shape of the neck region is created.
Next, the neck pinches off, and two large droplets are generated. A nearly pointed
middle section is created, and then undergoes relaxation and oscillation. The created
satellite droplet in the middle is almost uniform in size, and so is the primary droplet
for the three different density ratios. However, by examining the breakup time, it is
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Figure 15. Density ratio effect on the kinetic energy per unit mass for both phases. The
three cases here are the same cases in figure 14. (a) Droplet phase, (b) suspending fluid.
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Figure 16. Density ratio effect on the evolution of the ligament length. The three cases here
are the same cases in figure 14. The length is non-dimensionalized by its initial length.

noted that large density of the suspending fluid tends to retard the breakup, as the
pinch-off times for the three density ratios (η =1, 10 and 100) are 180.1, 157.0 and
147.7, respectively.

The density ratio effect on the pattern of the relaxation and pinch-off was shown
to be small. We shall investigate the effect on evolutions of the kinetic energy and
the ligament length. Figure 15 displays kinetic energy per unit mass versus time. The
kinetic energy is non-dimensionalized by ec, and time is non-dimensionalized by tc.
Here, the first trough on the figures indicates the approximate moment when the
ligament is pinched off. It can be seen that the relaxation and pinch-off process is
retarded by a large density of the suspending fluid. The kinetic energy of the droplet
is larger for smaller density of suspending fluid. The difference in the kinetic energy of
the suspending fluid is much larger, and this suggests that the lighter the suspending
fluid is, the easier it can be moved. In order to compare calculations with different
configurations, the reported kinetic energy is per unit mass. If the mass is considered,
then the kinetic energy of the whole suspending fluid for the three cases does not
vary significantly. The length evolution of the ligament is shown in figure 16, and we
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(a) (b)

Figure 17. The relaxation and breakup process for the elongated droplet with the initial
length ratio of 30 and Ohd = 3.73 × 10−2. The ligaments are shaded by their radius and the
contour levels are same as the ones in figure 5. (a) η = 10; λ= 0.1; Ohs = 1.18; t = 0.0, 345.6,
386.3, 389.1, 468.1, 554.5, 612.1, 670.0. (b) η = 10; λ= 10; Ohs = 1.18 × 10−2; t = 0.0, 144.6,
165.0, 165.7, 209.0, 272.4, 369.3, 432.7.

can see that the effect of the density ratio on the length is small. Again, from these
two figures, we can conclude that the pattern of the relaxation and breakup for the
different density ratios are similar, as the lines in the figures follow a comparable
pattern.

4.4. Length ratio effect

The effect of the length ratio on the relaxation and breakup process of the initially
elongated droplet is examined by carrying out the simulations with κ = 30 and 15, and
by comparing these two length ratios with the length ratio of 20, which was reported
in the previous sections. The density and viscosity of the two fluids are fixed for all
the simulations. The surface tension coefficient is the same as in the last section. The
Ohnesorge number (Ohd) based on the droplet properties is 3.73 × 10−2.

4.4.1. Length ratio of 30

Figure 17 shows the history of the relaxation and breakup of the ligament with
κ = 30 for two different cases (figures 17a and 17b). These two cases are: (a) η = 10,
λ= 0.1, Ohs = 1.18; (b) η = 10, λ=10, Ohs =1.18 × 10−2. The times are non-
dimensionalized by the characteristic time tc. For case (a), the viscosity ratio is 0.1
which is less than O(1). The filament in the neck region has the shape of a cylinder,
which is similar to the shape of the case in figure 5(a) where the viscosity ratio is also
0.1, but with a length ratio of 20. After the two end droplets pinch off, the middle
section is also nearly pointed, and this middle section experiences relaxation. Finally,
the middle section relaxes to a spherical droplet without any oscillation. For the case
in figure 17(b), the necking shape is similar to the cases with a viscosity ratio greater
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(a)

(b)

Figure 18. The vortex-ring pattern just before the breakup for the droplet with κ = 30. (a)
Stream lines in the x–y plane for case of figure 17(a). (b) Stream lines in the x–y plane for
case of figure 17(b). Note that these streamlines are interpolated from three-dimensions and
are approximate.

than O(1) in the previous sections. However, the middle section with two pointed ends
is a little bit wavy (see figure 17b at t = 144.6, 165.0 and 165.7). These waves vanish
as time progresses, and two bulbous ends are generated due to the contracting of the
two pointed ends (see figure 17b at t = 209.0). Then a neck region is created, and
because the lateral curvature is larger than the radial curvature, but in the opposite
direction, the surface tension forces at this neck region pull the interface outwards.
This leads to the reopening of the neck, and the two bulbous ends collapse to a
toroid, which then oscillates. It is clear that the created droplet in the middle section
for the length ratio of 30 is much larger than the one with length ratio of 20.

The streamlines for the above two cases near the breakup are shown in figure 18.
Again vortex rings are observed for both cases, and the total circulation in the whole
domain is zero, as the vortex rings are opposite in direction. However, there are only
six vortex rings for the case in figure 18(a), while there are 8 vortex rings for the case
in figure 18(b). The vortex rings near the centre and at the neck region for the case
in figure 18(a) are much larger than the ones for the case in figure 18(b). There are
four small vortex rings in the middle section for the case in figure 18(b), and these
vortex rings lead to the wavy shape.

A simple explanation of why the vortex rings are larger in size for the small viscosity
ratio is given here. Assume that the velocity (or momentum) on the interface caused



Numerical study of the relaxation and breakup 257

Figure 19. Velocity field and the shape of the droplet’s middle section at t = 468.1 for the case
of figure 17(a) in the x–y plane. The velocity vectors are scaled according to their magnitude.

by the surface tension forces is almost same in magnitude, and thus the viscous shear
stresses on the interface are the same. Then for a two-dimensional two-phase flow,
we have

μs

∂ui

∂xs

= Constant, (4.2)

where ui is the interface velocity, and x denotes representative length. So for the same
constant in (4.2) for different viscosity ratios, it is clear that larger viscosity of the
suspending flow needs longer distance (xs) to diffuse the momentum. By comparing
figure 18 with figure 10, it is noted that although the number of the vortex rings are
the same for the case with λ= 0.1, the size of the vortex rings at the middle section
for the large length ratio is much greater than that of the length ratio of 20. For cases
with λ� O(1), the number of the vortex rings is much different. There are two more
vortex rings in the middle section for the large length ratio.

The relaxation pattern of the middle section after the pinch-off of the two end
droplets for the two cases in figure 17 is distinctly different. In order to understand
the difference, a detailed examination of the fluid fields is necessary. Figure 19 displays
the velocity fields for λ= 0.1 at t = 468.1. The velocities in the centre move the portion
of the interface there outwards, and the velocities at the two ends are moving towards
the centre. The large surface tension forces at the two ends make the velocity in the
centre greater until a spherical shape is reached. Figure 20 shows the velocity fields for
the case with λ= 10 at three different times. There are two large vortex rings near the
centre, and these two vortex rings decrease the radius of the neck region (t = 209.0).
As the two ends move towards the centre, the two inner vortices become stronger,
and the necking is accelerated, which increases the lateral curvature at a higher speed
than the radial curvature (t =257.8). Later, the lateral curvature becomes larger than
the radial curvature, and the surface tension forces move the interface and the fluid
in the neck region outwards (t = 275.1). The two inner vortex rings break down.
Finally, the neck is reopened, and the middle section experiences damped oscillation.

4.4.2. Length ratio of 15

Three cases of the relaxation and breakup of an elongated droplet with a length
ratio of 15 are reported and discussed in this section. The density ratio for the three
cases is 10, and the viscosity ratio for each case is 0.1, 10 and 100, respectively. The
history of the shape relaxation of the three cases is displayed in figure 21. There are
three droplets after the breakup with a satellite droplet in the middle for the cases
with λ= 10 and 100, while there are only two primary droplets for case with λ=0.1.
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Figure 20. History of the relaxation of the middle section after the pinch-off of the two ends
droplets for the case in figure 17(b) in the x–y plane. The velocity vectors are scaled according
to their magnitude.

The shape of the neck region for viscosity ratio of 0.1 is similar to that of the cases
with the same viscosity ratio reported in the previous sections. The shape of the neck
region for the higher viscosity ratios is also similar to that of the cases with large
viscosity ratios that were presented in the previous sections. The differences can be
explained by the velocity fields shown in figure 22. For the case with a viscosity ratio
of 0.1 (figure 22a), the maximum velocity on the interface near the neck region is
at the centre of the neck region. This indicates that the neck region with the largest
curvature experiences a rapid decrease in radius until pinch-off occurs, and thus only
two primary droplets are generated. However, for the viscosity ratio of 10 (figure 22b),
the largest velocity on the interface near the neck region occurs away from the centre.
Thus, the radial dimension of the interface where the end bulb joins the cylindrical
part diminishes faster than the radius at the centre. Finally, two neck regions appear
near the two ends (figure 21b at t =136.8), and a satellite droplet is created (figure 21b
at t = 172.9). Comparing these three cases with the cases discussed in the previous
sections, it is clear that the satellite droplet size in the middle section depends strongly
on the length ratio.



Numerical study of the relaxation and breakup 259

(a) (b) (c)

Figure 21. The relaxation and breakup process for the elongated droplet with an initial
length ratio of 15 and Ohd = 3.73 × 10−2. (a) η = 10; λ= 0.1; Ohs = 1.18; t = 0.0, 216.0, 266.6,
270.7, 374.6. (b) η = 10; λ= 10; Ohs = 1.18 × 10−2; t = 0.0, 100.8, 136.8, 145.5, 172.9. (c) η =10;
λ= 100; Ohs = 1.18 × 10−3; t = 0.0, 100.8, 134.0, 144.1, 187.3.

(a) λ = 0.1, t = 216.0

(b) λ = 10, t = 100.8

Figure 22. Velocity fields for two of the cases in figure 21 in the x–y plane. The velocity
vectors are scaled according to their magnitude. However, for clarity, the scales for the two
figures are not the same.

4.4.3. Kinetic energy and evolution of the length

It has been shown in the previous sections that the length ratio has a significant
effect on the evolution of the relaxation and breakup as well as the velocity fields.
A quantitative analysis of the effect is performed by comparing the evolution of the
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Figure 23. Length ratio effects on the kinetic energy per unit mass of the ligament; η = 10.

kinetic energy and the length of the ligament for the three different length ratios
(κ =L0/r0) of 15, 20 and 30. The density ratio for all the cases here is 10.

Figure 23 displays the history of the kinetic energy of the ligament per unit mass.
The first peak on the left denotes that the necking process starts to dominate. The
fluid flow driven by the highest pressure near the neck region retards the motion of
the relaxation, thus the kinetic energy decreases. For the same viscosity ratio, the first
peak is larger for the smaller length ratio and also happens earlier. This suggests that
for a longer ligament, since more liquid mass must be moved, the motion is retarded
because the surface tension forces of the cases are all about the same in the early
stages. It is also clear that the kinetic energy for the cases with a viscosity ratio of 10
is much larger than that with a viscosity ratio of 0.1. This indicates that the viscous
dissipation for the smaller viscosity ratio is much larger. For the cases with greater
viscosity ratio and large length ratio (λ= 10 and κ = 20, λ=10 and κ = 30), after the
breakup of the end droplets, the middle section experiences relaxation and oscillation.
This effect is also evident in the oscillation of the kinetic energy. However, the kinetic
energy for λ=10 and κ = 15 decreases monotonically because the middle section is
very small compared to the two primary droplets. The gain of the kinetic energy due
to the relaxation and oscillation of the middle section is minimal.

Figure 24 shows the length evolution of the ligament for all the cases, where the
length is non-dimensionalized by the corresponding initial ligament length (L0). For
the same viscosity ratio, the two ends move faster for smaller length ratios, which is
consistent with the length ratio effect on the kinetic energy discussed previously. The
evolution of the length follows almost the same pattern for the cases with the same
viscosity ratio, i.e. for the smaller viscosity ratio, the length continuously decreases;
while the length diminishes faster in the early stage, then slower and then faster for
the cases with higher viscosity ratio. However, it is observed that for the length ratio
of 30 and the viscosity ratio of 10, the length does not decrease smoothly because of
oscillation of the middle section after the breakup of the two primary droplets.

4.5. Volume of droplets

To investigate the effects of the length ratio, the viscosity ratio, and the density ratio
on the volume of the newly created primary and satellite droplets, a list of the volume
for all the cases is shown in table 1. The volume is non-dimensionalized by the volume
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Figure 24. Length ratio effects on the evolution of the ligament length; η = 10.

κ λ η Satellite Primary left Primary right

15 0.1 10 0.000 9.390 9.405
15 10 10 0.124 9.271 9.268
15 100 10 0.162 9.213 9.210
20 0.1 10 0.452 11.004 11.013
20 100 1 3.424 9.461 9.456
20 10 10 3.479 9.405 9.393
20 100 10 3.661 9.318 9.308
20 100 100 3.747 9.164 9.184
30 0.1 10 9.059 10.399 10.386
30 10 10 10.392 9.677 9.663

Table 1. Volumes of the created primary and satellite drops.

of a sphere with radius of r0. It can be seen that larger length ratio creates larger
satellite drops, and for κ = 30, the satellite droplets almost have same size as the
primary ones. The sizes of the primary drops are nearly equal, since the two ends of
all the cases are initially the same. For the same density ratio and length ratio, the
satellite droplet becomes larger as the viscosity ratio increases. Large density ratios
also tend to create larger satellite droplets. The sizes of the satellite droplets are quite
different for viscosity ratios less than unity and larger than unity, due to the distinct
necking process. For each case, the volume difference between the two primary drops
is as small as 0.15 %. The total volumes of the created drops for cases with the same
length ratio are nearly uniform, with a variation of around 1%. This implies that the
numerical method is good in conserving the total mass of each phase.

4.6. End-pinching mechanism

The mechanism of the relaxation of a ligament leading to pinch off the two end
droplets, and also the formation of satellite droplets, is the end-pinching mechanism
proposed by Stone et al. (1986) and Stone & Leal (1989), and further was depicted
schematically by Qian & Law (1997). However, recently, based on their numerical
simulations, Tong & Wang (2007) reported that this end-pinching mechanism was
‘flawed’ and proposed a correction of the mechanism. As pointed out in the
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introduction, the major difference for the problem studied by these two groups is
that the viscosity ratio for Tong & Wang (2007) is infinity, while the viscosity ratio
for the works by Stone et al. (1986) and Stone & Leal (1989) is mainly less than
O(1).

Based on our numerical results for different viscosity ratios, by solving the two-
phase flow system directly, we have observed two kinds of neck shape. For viscosity
ratio less than O(1), a cylinder shape of the necking region is obtained, and in all
our simulations the neck breaks up and finally two end droplets are created. The
velocities moving towards the centre and the end are symmetric about the neck point.
These two velocities induce the reduction of the neck radius. The reduction of the
neck radius further increases the pressure in the neck, thus the neck moves inwards.
This process is unstable and eventually leads to breakup. This agrees with the theory
by Stone et al. (1986), Stone & Leal (1989) and Qian & Law (1997). However, for
the viscosity ratio greater than O(1), a conical shape of the neck region is observed.
Due to the concave curvature in the lateral direction of the neck region, the highest
surface tension force occurs away from the place with the smallest radial dimension.
The surface tension forces near the neck point may create a net increase or decrease
of pressure depending on the magnitude of the lateral curvature. If the surface tension
force is driving pressure downwards, then the competition between the flows moves
the mass out of the neck region, and the surface tension forces determine the pinch-
off or the reopening of the neck region. This agrees with Tong and Wang’s analysis
(Tong & Wang 2007).

5. Conclusions
The transient motion of the relaxation and pinch-off of an elongated droplet in

another viscous fluid has been investigated numerically by a three-dimensional MMIT
method. The simulations are in a general regime where both the viscous forces and
inertial forces have significant roles, and thus are performed by solving the full
Navier–Stokes equations using a finite volume scheme. With an interface of zero
thickness, the jump and continuity conditions across the interface are implemented
directly without any smoothing. The effects of the viscosity ratio, the density ratio
and the length ratio on the process were examined.

Vortex rings were observed for all cases of the relaxation and pinch-off, and
these vortex rings play significant roles in the droplet evolution. Vortex rings are
created and also collapsed during the process. The pattern of the vortex rings is
strongly dependant on the viscosity ratio and the length ratio. For low viscosity ratio
(λ� O(1)), the neck region is of the shape of a cylinder, and once this neck region
is created and the length of the ligament is long enough, this neck will eventually
break up. The velocities in the neck region are symmetric about a plane through the
neck point and perpendicular to the relaxation direction. For a large viscosity ratio
(λ� O(1)), the neck region is conical, and there is no symmetry for the velocities.
This different shape of the neck region confirms the recent observations of the neck
shapes for air bubbles in water and water droplets in air by Burton et al. (2005).
The end-pinching mechanism was also found to be dependent on the viscosity ratio.
The mechanism proposed by Stone et al. (1986), Stone and Leal (1989) and Qian and
Law (1997) is applicable to the smaller viscosity ratio, while the mechanism by Tong
and Wang (2007) is suitable for the large viscosity ratio. The motion for the small
viscosity ratio is much slower than the one with large viscosity ratio. Capillary waves
were observed in the middle section for the length ratio of 30. However, these waves
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play no significant roles on the relaxation of the middle section after the breakup of
the two end droplets.

The density ratio has minimal effect on the pattern of the relaxation and breakup.
However, the motion is retarded by large density of the suspending fluid as more mass
must be moved. The length ratio affects the process in a noticeable way. The vortex
ring patterns are different for all the three different length ratios. The relaxation and
pinch-off process is slowed down by large length ratio as the mass of the droplet is
greater. The satellite droplet formation depends strongly on the length ratio.

We thank Professor J. Blair Perot of the University of Massachusetts, Amherst for
sharing code in support of this project. The second author thanks the support from the
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